e

-

law v

e d

CALCULATION AND USE OF AN
ENVIRONMENT’S CHARACTERISTIC SOFTWARE METRIC SET

Victor R. Baslll ! and Richard W. Selby, Jr. 2

! Department of Computer Sclence, University of Maryland, College Park, MD 20742, USA
2 Department of Informatlon and Computer Sclence, Unlversity of California, Irvine, CA 02717, USA;
was with the Department of Computer Sclence, University of Maryland, College Park, MD 20742, USA

ABSTRACT

Since both cost/quallty goals and production en-
vironments differ, this study presents an approach for
customlizing a characteristic set of software metrics to an
environment. The approach Is applled in the Software
Engineering Laboratory (SEL), a NASA Goddard produc-
tlon environment, 10 49 candidate process and product
metries of 652 modules from six (51,000 — 112,000 line)
prolects. For thls particular environment, the method
ylelded the characteristic metric set {source lines, fault
correctlon effort per executable statement, deslgn effort,
code effort, number of I/O parameters, number of ver-
slons}. The uses examined for a characteristic metric set
include forecasting the effort for development,
modification, and fault correction of modules based on
historical data.

1. Introduction

Several metrics have been proposed to predict pro-
duct cost/quality and to capture distinct project aspects
(8, 12, 18, 19, 21). The effectiveness of the metrics In
capturing what Is Intended, however, has depended on
the partlcular environment examilned [1, 4, 9, 10, 13, 17,
27, 28, 29]. A particular software metrlc that has been
useful to characterize, evaluate, or predict aspects of soft-
ware development In one environment may have Himited
usefulness elsewhere. The differlng cost/quallty goals
among environments and the dlversity in methodology,
software type, etc. contribute to the Inconslstent perfor-
mance of metrics. Thus, It seems lnappropriate to at-
tempt to select a set of software metrics that have
unlversal eflectlveness across all software environments.
The sclection of a set of metrics appropriate for a partic-
ular environment must constder 1ts individual features;
that 1s, a metric set must be customlzed to a specific en-
vironment.

Sectlon 2 describes the idea of characteristic soft-
ware metric sets. Sectlon 3 presents an approach for cus-
tomizing a characteristlic set of cost and quality metrics
to an environment. The appllcation of the approach In a
software production environment 15 discussed 1n Section
4. Sectlon 5 Investlgates 't.he use of a characteristic
metric set as a management tool. Scctlon 6 presents the
conciuslons from thls work.

CH?2139-4/85/0000/0386 © IEEE 1985

2. Characteristic Software Metric Sets

The successful management of software projects
requires a diverse range of capabliltles, Including monltor-
ing and controlling the evolving software system and
forecasting the outcome of the development. Technlques
that asslst In these management functions may lead to
more successful projects, and possibly higher product re-
quirement conformance and operatlonal rellabliity. - The
idea of a characteristic scftware metric set support.s
several aspects of software management.

A characteristic software metric set Is a conclse
collectlon of metrlcs that capture distlnct factors In a
software- development/malntenance environment. A
characterlstlec metric set can be thought of as a vector of
metrics that represents different areas of Importance In an
environment. Since both cost/quality goals and produc-
tlon environments differ, the particular factors that are
captured by the metrics In the set will differ across en-
vironments. The calculation of a characteristic metric set
should be based on the particular cost and quality goals
in an environment, and reflect the inherent differences of
an environment from others,

A characteristlc metric set may be used to 1)
characterize an environment, 2} compare ap environmnient
with others, 3) monitor current project status, or 4) fore-
cast prolect outcome relatlve to past projects, when
metrics In the set are avallable early In deveiopmem.
Once the distinct factors In an eavironment's se¢t are
determined, the set then characterizes what aspects are
tmportant In the environment. Comparing the charac-
teristic set of factors in one environment with the sets of
other environments provides a format to distinguish and
contrast among them. WIthin an Individual environment,
the actual values of the retrics In the set characterize a
particular project or project subsystem. The change in
the metric values during a prcject can be used to monitor
project status and Its change over time. The characterls-
tle set in conjunctlon with historical data can be used to
forecast the outcome of the current project relative to
past project outcome.

The goals for this study are threefold. 1.) Develop
an approach for customlzing a set of metrics to particular
cost/quallty goals In a specific environment. I1.) Apply
the approach to calculate the characteristic set for the
NASA./SEL environment. III.) Examine the usabllity of

4-10

the approach as a management tool for predicting out-
come of system parts. ’

3. Approach for Set Calculation

A proposed approach for calculating a characterls-
tic metric set consists of three steps: 1) formulate the
goals and questions that represent cost/quallty factors In
an environment; 2) list all metrics that capture informa-
tlon relating to the goals amd questions; and 3) condense
metrics Into a set capturing ‘distinet factors. This ap~
proach satisfles the two key aspects of customlzing a
characteristic metric set to an envlron_mem.: sensitivity to
the cost/quallty goals of Importance In the environment,
and capturing the features that glve the environment Its
identlty. :

The first step Is to generate a cost/quality goal
and question framework for the environment on which to
base the generation of all potentlal metrles (see Figure 1).
After the goals and questlons have been specifled for an
environment, all possible metrics are listed that represent
relevant information. These first two steps are an appll-
catlon of the goal-questlon-metrlc paradigm (8, 7). Slnce
a software environment Is in some sense defilned by the
projects 1t develops, applying the metrics listed to those
projects reflects an environment's ldentlfying features.
The third step Is to condense the collectlon of candldate
‘metrics Into a characteristie set. Factor analysts may be
applted to accomplish this step {22, 24]. This data redue-
tlon task actually grcups the metrics listed according to
how they relate to the -distinct factors In an environment.
Appropriate metrics that relate to each of the factors can
then be selected based on some criterla, such as ease of
. calculation or phase avaliabliity. In very heterogeneous
environments, cluster analysls {18, 24] may first be used
to ldentify demographicaily simliar projects or subsys-
tems, followed by factor analysls within the groups. Sec-
tion 4.3, “NASA/SEL Set Calculation,” describes the ap-
plicatlon of these steps In a software production environ-
ment. ’

3.1. An Alternate Approach

An alternate approach to determining a small set
of characteristic metrics was examined In [15]. In this ap-
proach, twenty candldate complexity metrics were calcu-
lated on 585 PL/I procedures. The name of each pro-
cedure was put Ilnto a large ‘‘complexity pot'’ once for
each time the procedure appeared In the top declle of a
candidate complexity metric. Since there were twenty
candidate metrics, the name of a given procedure could
then appear up to twenty times In the pot. The pro-
cedures ldentifled by a single metric were then compared
with those In the total pot. For each appearance of a
procedure name In the total pot, a candldate metric was
awarded one polnt If that name was In the metric's top
declle. The candldate compiexity metric that scored the
highest would be selected for the characteristic set. All
occurrences of procedure names were then removed from
the pot that appeared In the top declle of the first metric
selected. Tle scores for the metrics were then recalculat-
ed based on the remalning procedures and another metric

387

Flgl’lre 1. Gonal/questlon/metrle paradlgm.
Goals: /Ci, /(fg\ G;
Qucstions: Q| Qg Q3 Q4 Qs
Metrics: M, M, M; M,

would then be selected, continulng until no procedures
remalned In the pot.) .

This first approach for calculating a metric set Is
simple and stralghtforward. However, there are 'sSome
drawbacks resulting from the slmplicity, Including the
technique used to select metrics for the characteristic set
and a fundamental assumption in the calculation. Inciud-
ing a large number of highly dependent program metrics
In the coilectlon examilned (e.g., the software ‘‘quantity”
group of executable statements, length, volume, vocabu-
lary, ...) Increased disproportionately the number of ap-
pearances of routines commonly selected by that group 1o
the pot of ‘“‘complex” programs. It s therefore no
surprise that the metric that selected the greatest percen-
tage of the appearances In the pot Is one member of the
“quantity’” group (iengili). In each of the iwenty pro-
gram metrics examined, the top declie of programs was
chosen as the most complex accordlng to that metric.
This declslon relled on the Impilclt assumption that soft-
ware complexity s a monotonically increasing function of

Qur paper presents an approach for calculating a
characteristic set that advances the above approach by 1)
selectlng candidate metrlcs based on an environment's
cost/quallty goals, and 2) abstracting relationships (e.g.,
correlatlons) among (in)dependent metrics Into a set of
environmental factors. The use of values of characteristlc
metrics to ldentify modules with particular attributes,
such as those of high '‘complexity’” as was done In [15], Is
discussed Iln Sectlon 5.

4. Application in the NASA/SEL Environment

This sectlon describes the NASA/SEL environ-
ment, the data collection, and the resulting characteristic
metric set.

4.1. NASA/SEL Environment

The Software Englneering Laboratory (SEL) (2, 3.
11, 25] Is a joint venture between the University of Mary-
land, NASA/Goddard Space Flight Center, and Comput-
er Scilences Corporation. The purpose of the SEL has
been to provide an experimental database for examining
relatlonshlps among the factors that affect the software
development process and the dellvered product. The
software comprising the database Is ground support soft-
ware for satellites. The six systems analyzed In thls
study consisted of 51,000 to 112,000 lines of FORTRAN
source code, and took between 6900 and 22,300 person-
hours to develop over a perlod of 9 to 21 months. There

4-11

o e o e e

J VUSRI TGPIEFCERS G PRIEIY. T 3 R NEpPIos

© s s A

are from 200 to 600 modules (e.g., subroutines) In each
system and the stall slze ranges from 8 o 23 peopie per
project, Including the support personnel. Anywhere from
10 to 61 percent of the source code Is reused or modifled
from previous projects.

4.2. Data Collection

The data discussed In thls study are extracted
from several sources. Among the data analyzed are the
effort to deslgn, code, and test the varlous modules of the
systems as well as the changes and faults that occurred
during thelr development. LEffort data were obtalned
from a cotlection form that 1Is fllled out weekly by all pro-
grammers on the prolect. They report the time they
spent on each module 1n the system partitloned into the
phases of deslign, code, and test, as well as any other time
they spend on work related to the project, e.g., documen-
tatlon, meetings, etc. A module 1s defilned as any named
object In the system; that ls, a module is elther a maln
procedure, block data, subroutine or function. The faults
and changes are reported on another data collection form
that Is completed by a programmer each tlme a change Is
made to the system. A statlc code analysis program
called SAP [14] automatlcally computed several of the
static metrics examined in this analysis.

4.3. NASA/SEL Set Calculation

In the applicatlon of the approach In the SEL en-
vironment, there were two major reasons to use just six
recent projects. Flrst, changes and Improvements in de-
velopment technologles and personne! tend to be reflected
In the projects developed (as they are \ntended to be).
Therefore. the consideration of projects not recently rom-
pleted would not be representative of the current environ-
ment. Second, several development environments do not
have a long history of data collection. Discussing an ap-
proach that required a large project database would have
little utility for them.

Three goal areas were defined for the SEL environ-
ment. The first goal area was to analyze the system de-
velopment eflfort. An example question under thls goal Is
“What are the attributes of modules that result In hlgh
development etfort?”. The second goal area was to
analyze the systemm modificatlons. An example question
here I1s **What are the attrlbutes of modules that wiil be
difflcuit to change?”. Analyzing the system faults was
the third goal area. An example questlon would be
*What are the attributes of moduies that will be fault-
prone?”. The generated list of metrics based on these
three goal areas appears In Table 1; a total of 40 metrics
was examlned. The metrics are grouped according to the
general areas of slze/complexity {21], effort,
faults/changes, and software sclence {19]. The set: nota-
tion In the table slgnifies the ratlo of one metric over
another, e.g., amount of code eflort was consldered alone
and dlvided by the amount of testlng effort, overhead
effort, and total effort. In addltlon to belng examined
alone, several effort and faults/changes metrles were di-
vided by size/complexlty metrics. ’

From the six projects, this analysls focuses on 652

388

Table . Llst of measures examined tn the SEL
cnvironment.

Stze/ComplexIty Area

source lines (SIRC)

exccutable statcments (XQT)
comments

comments/SRC
Cyclomatlc_complexity

calls

{Cyclomatic_complexlity} over {XQT}

Effort Area

total _effort
deslgn_efTort
code_effort
testing_efTort
{deslgn_eflort} over {code_effort}
{code_effort} over

{testing_effort, overhead_eflort, total_effort}
{destgn_effort, code_effort, testing_effort} over {calls}
{design_effort, code_effort} over {n,}
{total_effort} over

{SRC, SRC-comments, XQT, calls}

Taults/Changes Area

verslon

total_changes

welghted _changes

total_faults

welghted _faults

{total_faults. welghted_faults} over {SRC, XQT}

Software Sclence

™ /P 1y N1 . N2/n,
N N Vv Vx L

1/L"° E" E"" Ex* B-
A

newly developed modules with complete data for the
metrlcs listed in Table 1. The usc of princlpal factor
analysls (with orthogonal vartmax rotatlon) (22, 24] Iso-
lated a set of six distinct factors, {size, modlilcation and
fault correctlon effort density, development effort, code
and test effort, 1, #verstons}, which arc listed n des-
cendlng order of overall importance and cumulattvely ex-
plalned 79% of the varlance. The 7,y metrlc Is tie
number of I/O parameters In a module. Some appronri-
ate metrics that related well to each of the factors 1 the
set were a) slze — source lines, executable statements, snd
N (the total number of operators and operands}: b)
moditicatlon and fault correctlon elfort density - nnlt
correctlon effort / executable statement; ¢) devclopragt
effort — deslgn effort, total effort / exccutable staterciit,
and des!gn effort / subroutlne call; d} code and test eilory
— code effort, code effort / subroutine call, and test ¢ifiort,

/ subroutine call; ¢) 7, ~ ng"; and) #versions — nminber

of module verstons. "Thus, a feasible characteristle metste
set for the SEL environment 1s {sourcc nes, fault corroc-
tion effort per exccutable statement, deslen eflort, code
effort, number of [/O parameters, number of verslous}.

4-12

Table 2. Fraction of past SEL, modules In the
upper quartile of Lthe dependent varlables,
2a.) Module Development Effort

Characteristle Quartile of Metric M,
Set Metric M, Upper | Second | Third | Lower
code cffort 74 .18 01 .04
design cflort 50 . .18 .13 .13
source lincs .51 26 .14 .09
ng 48 .24 a7 11
verslon 44 37 13 .08
fault correctlon 41 28 .15 .16
effort / XQT
2b.) Module Modificatlon Effort
Characteristic Quartlle of Metrle M,
Set Metrle M; Upper | Second | Third | Lower
fault corrcction .85 .18 08 .09
effort / XQT
version .52 .33 11 04
code eflort .50 27 17 .08
source lines .50 .28 .13 .09
ny 45 24 .23 .08
design effort .41 .25 .18 .17
2¢.) Modute Fault Correctlon Effort
Characteristle Quartlle of Metric M;
Set Metric M, Upper | Second | Third | Lower
fault correction .81 .19 .00 .00
effort / XQT
version .50 .35 12 .03
code eflort 48 .29 .15 .08
source lines 42 .33 14 .11
n, 42 .28 .19 11
design eflort .38 .25 .20 .19

5. Use as a Management Tool

Although a characteristic set has the several uses
outllned In Sectlon 2, this study focuses on the use of
metrics In the set to forecast the outcome of modules in
projects. Several studles have polnted to the unsatisfac-
tory use of metrics as direct predictors of software cost
and quallty {5, 20, 26]. This inadequacy motivates the
use of software metrics from a new perspective ~ the ex-
amination of how well the metrics In the characteristic
set can ldentify system parts (or whole systems) resuiting
In high or low cost/quallty. System parts with interest-
Ing cost or quality attributes Include those with high/low
development effort, high/low modificatlon effort, or
high/low fault correction effort.

An approach for using metrics to ldentify system
parts having Interesting attributes 1S as foilows. First,
select some Interesting cost or quallty aspect of a system
part, such as the total development effort for a module.
Then, choose a set of modules that would be useful to
1dentify, such as those modules that might eventually be
in a project's upper quartlle of total development effort.
Next, from past projects determine how often metric

389

value ranges (e.g., quartiles) contalned modules that end-
ed up In the upper quartlle of development effort. Flnal-
ly, characterize and ldentify modules In a current project
that are ltkely, based on past metric data, to end up in
the upper quartile of total development effort. The calcu-
latlon of a characteristlc metric set and the use of
corresponding metric data from past prolects Is Intended
to heip ldentlIfy Interesting modules in a system.

§5.1. Metric Data from Past Projects

The data displayed in Table 2 were calculated
from six SEL projects, and are Interpreted as follows.
Thé table 1s divided Into three sectlons, corresponding to
the three SEL goal areas discussed above. There is a
table sectlon for cach dependent varlable: total module
development effort, total effort for module modification,
and total effort for fauit correctlon In a module. The
characteristic set of six metrics that represent the
different environmental factors iIs listed In each section of
the table. Conslder the sectlon on total module develop-
ment effort. The table displays the fractlon of modules
contalned In the upper quartlle of total development

effort, based on thelr filnal quartlle rankings for the
Table 3. Fraction of past SEL modules in the
Jlower quartlle of the dependent variables.
3a.) Module Development Effort

Characterlstlc Quartlle of Metrle M,

Set Métric M, Upper { Second | Third | Lower
code effort .00 00 | .23 77
source lines .10 12 24 .54

verslon .08 .14 .30 .50
ng .09 .21 .25 .45
design effort .02 .23 37 .38
fault correction 12 .25 32 31
effort / XQT
3b.) Module Modification Effort
Characterlistlc Quartile of Metric M,
Set Metric M, Upper | Second | Third | Lower
version .09 15 28 ".48
fault correction .01 .13 .43 43
effort / XQT
ng .14 .19 .25 42
source lines .11 .18 .30 41
code effort .11 .18 .34 37
design effort .18 .28 .27 27
3c¢.) Module Fault Correction Effort
Characterlstlc Quartlle of Metric M,
Set Metric M; Upper | Second | Third | Lower
fault correctlon .00 .00 .50 .50
effort / XQT
version .18 .18 27 37
source lines .21 .19 .29 31
code effort .18 .24 27 .31
g .20 24 25 31
deslgn effort .18 .25 .29 .28

4-13

SO RIUTSU PRI DV I -V WP IUIF PISUT PD WES VIRRS PHE SR

characteristie metrics. For example, 74% of the modules
in the upper quartlle of code effort were also In the upper
quartlie of total module development cffort. Only 9% ot
the modules In the lower quartile of source ilnes were In
the upper quartlle of total development effort. The In-
terpretation 1s the same for the other dependent vartables
of module modificatlon effort and module fault correctlon
effort. Table 3 Is analogous to Table 2, except 1t displays
the fractlon of modules contalned in the lower (Instead of
the upper) quartile of the respectlve dependent varlable.
For example, 50% of the modules In the lower quartile of
nuinber of verslons were also In the lower quartile of total
module development effort.

5.2. Data Interpretation

The Informatlon In these tables could be used to
forecast the outcome of modules In a system. At the end
of the design phase, the 7, metric and the amount of
effort spent In deslgn are known. The modules in the
upper quartlle of design effort should be identifled by a
proJect manager because 589 of these modules ended up
in the upper quartile of total development effort. That Is,
In this environment the modules In the upper quartile of
design effort were more than twice (=.56/.25) as likely
than by chance to be the most expenslve to develop
overall; these modules were approximately 28 (=.568/.02)
times more llkely to be In the upper quartlle of total de-
velopment effort than to be In the lower quartlie of total
development effort. Modules In the upper quartlle of the
7, metric were almost twice as llkely than by chance to
requlire the most effort to develop, modlfy, and correct.

Other observations Include 1) It 1s easlest to ldentify
those modules that will have high development effort; 2)
it 1s most difficult to identify those modules that will re-
quire iittle fault correctlon effort; and 3) the metrics of
design effort and 7, are reasonably slmilar In forecasting
ablllty, except that 7, seems superlor In ldentifying
modules that will require little modification effort.

The two tables help characterize the SEL develop-
ment environment. The total development effort for a
module tends to be Indlcated by the module’s codlng
effort — modules In the extreme quartiles of codlng effort
are three times more ltkely than by chance to be In the
corresponding extreme quartiles of total development
eflort. Slince the programmers in the SEL are quite ex-
perienced In the application area and with appropriate
design approaches, the domlinance of coding eflort seems
reasonable. In other environments, the amount of deslgn
effort mlght better Indicate the total development effort
required. Other observatlons Include 1) high denslty of
fault correction effort (fault correction effort per execut-
able statement) Indlcates high total modificatlon. elfort
and high total fault correctlon effort; and 2) an extreme
(high or low) number of program versions reflects a
corresponding amount of modliicatlon effort and correc-
tion effort.

Ideally, the metrics In the characteristic set would
all be avallable early in development and have strong re-
latlonshlps with the dependent variables of interest.
Some metrics, such as fault correctlon effort per execut-

able statement, have Nmlted usefuiness as a predictor be-
cause of not belng avallable untll Iate 1n project develop-
ment. An assumption 1s neceded in order to use inetric
data from past projects to forecast the outcome of
modules from a current project. The assumptlon Is that
the relatlonship between a module’s current metrlc quar-
tlle and Its eventual outcome (l.e., development,
modlfication, and correction effort) Is the same as the re-
latlonship between the flnal metric quartiles of past pro-
Jects' modules and their outcome.” This assumption is
rcasonable when using data from recent projects that are
similar to the current project, and when predicting from
metrics whose flnai quartlles are reasonably certaln early
in development (e.g., the number of I/O paramneters in a
module tends to remaln relatively constant once specifled
In the design phase, and therefore, the mectric’s value does

not tend to change quartlles). Note that the examples
and metric data presented are from a particular environ-
ment, project data from other environments may differ.

Using a characteristlc metric set with correspond-
ing data from past projects enables the moanltoring of a
small set of customized metrics to forecast current project
outcome. A characteristic set Is usable as a management
tool as soon as the metrics In the set are avallable.

6. Conclusions :

A characteristic software metrle set 1s Intended to
help support the eflectlve management of software devel-
opment and malntenance. The approach examined for
bullding a characteristic metric set s adaptable to
different cost/quality goals and to dltferent environments.
The calculation and use of the sot canld he cnunled to an
automated proJect monltor and database. The major
results of this study are 1) an approach has been
described for customlizing a characteristic sofiware metric
set to an environment: 2) the applicatlon of the approach
to the SEL production environment ylelded the charac-
teristle software metrlc set {source lines, fault correction
eflort per executable statement, deslgn effort, code effort,
number of I/O parameters, number of verslous}; and 3)
the use of a characteristlc metric set with corresponding
historical data can assist In projJect management by fore-
casting the outcome of system parts.

Further Investigation In thls area Includes Incor-
porating the characteristlc metric set data (froin Sectlon
5) Into a knowledge-based system. A statl:tlcal pattern
classificutlon scheme [23] !s under conslderation, aithough
such an approach applles Bayes' Theorem and would as-
sume Independence 2mong the metrles In the characterls-
tlc set. In this environment independence hctween, for
example, design effort and number of 1/Q pararmeters s
reasonable, while Independence between source lines and
code eflort- Is questionable. A knowiedge-based system
that could use infortnation from several metrics simul-
taneously would characterlze system parts more
effectlvely and florecast thelr: outcomes more preclsely.
This work Is Intended to advance the understanding of
the use of varlous metrics to characterize and predlct as-
pects of software cost and quallty.

7. Acknowledgement

Research supported In part by the Alr Force Office
of Sctentific Rescarch Contract AIFOSR-F40620-80-C-001
and the Natlonal Aeronautics and Space Administration
Grant NSG-5123 to the Unlversity of Maryland. Com-
puter support provided in part by the Computer Sclence
Center at the Unlversity of Maryland.

8. References

1)

3]

{4

{5}

8]

(7]

8}

(9]
(10]

(11]

(12]

f13]

. W, Bailey and V. R. Basill. A Mcta-Model for Software

Development Icsource Expenditures, Proc. Fifth Int.
Conf. Software Sngr., San Diego, CA, pp. 107-1186, 1981,

. R. Basili, M. V. Zclkowitz, F. E. McGarry, R. W. Reiter,

Jr., W. F. Truszkowskl, and D. L. Weiss, The Software
Enginecring Laboratory, Software Eng. Lab.,
NASA/Goddard Space Flight Center, Greenbelt, MD,
Rep. SEL-77-001, May 1977.

. R. Basili and M. V. Zelkowitz, Analyzing Medium-Scale

Software Decvelopments, Proc. Third Int. Conf. Software
Engr., Atlanta, GA, pp. 116-123, May 1978.

Victor R. Basili, Tulorial on Models and Metrics for Software

V.

B.

Management and Engineering, IEEE Computer Society,
New York, 1980.

R. Basill, R. W. Selby, Jr., and T. Y. Phillips, Metric
Analysis and Data Validation Across FORTRAN Projects,
IEEE Trans. Software Engr. SE-9, 6, pp. 652-663, Nov.
1983.

. R. Basili and R. W. Selby, Jr.,, Data Collection and

ings of the American Statistical Association and Biome!ric
Society Joint Slatistical Meetings, Philadelphia, PA, Au-
gust 13-16, 1934.

. R. Basili and D. M. Weiss, A Methodology for Collecting

Valid Software Engineering Datas, Trans. Software Engr.
SE-10, 6, pp. 728-738, Nov. 1984.

. A. Behrens, Mecasuring the Productivity of Computer Sys-

tems Development Activities with Function Points, IEEE
Trans. Software Engr. SE-9, 6, pp. 648-651, Nov. 1983.
W. Boehm, Software Enginecring Economics, Prentice-
Hall, Englcwood Cliffs, NJ, 1981.

W. D. Brooks, Software Technology Payofl: Some Statistical

D.

Evidence, J. Systemas and Software 2, pp. 3-9, 1981.

N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R.
Basili, The Software Engineering Laboratory, Software
Eng. Lab., NASA/Goddard Space Flight Center, Green-
belt, MD Rep. SEL-81-104, Feb. 1982.

. T. Chen, Program Compiexity and Programmer Produc-

uvity, IEEE Trans. Software Engr., pp. 187-194, May
1978.

. Curtis, S. B. Sheppard, and P. M, Milliman, Third Time

Charm: Stronger Replication of the Ability of Software
Complexity Metrics to Predict Programmer Performance,
Proc. Fourth Int. Conf. Software Engr., pp. 356-360, Sept.
1979.

(14

(15]

(18}

(17)

(18]

(19}

(20}

{21]
[22]

[23)

©
2

(25]

f2e]

(27]

[28)

(29]

391

4-15

W. J Decker and W. A. Taylor, FORTRAN Static Source

Code Analyzer Program (SAP) User’s Guide (Revision 1),
Software Eng. Lab., NASA/Goddard Space Flight Center,
Greenbelt, MD, Rep. SEL-78-102, May 1982.

. L. Elshoff, Characteristic Program Compiexity Metrics,

Proc. Seventh Int. Conf. Software Engr., Orlando, FL, pp.
288-203, 1984.

. S. Everitt, Cluster Analysis, 2nd ed., Helneman Educa-
tional Dooks Ltd., London, 19380.

A. R. Feuer and E. B. Fowlkes, Some Results from an Em-

M. H. Halstead, Elements of Software Science,

pirical Study of Computer Software, Proc. Fourth Int.
Conf. Software Engr., pp. 351-355, 1979.

. E. Gaflney and G. L. Heller, Macro Variable Software

Models for Application to Improved Software Devclop-
ment Management, Proc. Workshop on Quantitative Soft-
ware Models for Reliability, Complexity and Cost, IEEE
Comput. Society, 1980. .

North Hol-
land, New York, 1977.

. G. Hamer and G. D. Frewin, M. H. Halstead’s Software
Science - A Critical Examination. Proc. Sizth Int. Conf.
Software Engr., Tokyo, Japan, pp. 197-206, Sept 13-16,
1982.

T. J. McCabe, A Complexity Measure, [EEE Trans. Software

S.

J.

e
Pl

.o 1 oA oteats Quctamm (G e
iaiisiical Analysis System {SAS) User

Engr. SE-2, 4, pp. 308-320, Dec. 1976.

A. Mulaik, The Foundations of Factor Analysis, McGraw-
Hill, New York, 1972.

A. Reggla, Knowledge-Based Decision Support Systems:
Development through KMS, Ph.D. Dissertation, Dept.
Com. Sci., Univ. Maryland, College Park, Tech. Rep.
TR-1121, Oct. 1981.

Inc., Box 8000, Cary, N

Annotated Bibliography of Software Engineering Laboratory

(SEL) Literature, Software Eng. Lab., NASA/Goddard
Space Flight Cenver, Greenbelt, MD Rep. SEL-82-006,
Nov. 1982.

V. Y. Shen, S. D. Conte, and H. E. Dunsmore, Software Sci-

J.

ence Revisited: A Critical Evaluation of the Theory and
Its Empirical Support, Trans. Software Engr. SE-9, 2,
pp. 155-165, March 1983.

. Vosburgh, B. Curtis, R. Wolverton, B. Aibert, H. Malec,

S. Hoben, and Y. Liu, Productivity Factors and Program-
ming Environments, Proc. Seventh [nt. Conf. Software
Engr., Orlando, FL, pp. 143-152, 1984.

. E. Walston and C. P. Felix, A Method of Programming
Measurement and Estimation, /BM Systems J. 16, 1, pp.
54-73, 1977.

C. Zoinowski and D. B. Simmons, Taking the Measure of
Program Complexity, Proc. National Computer Confer-
ence, pp. 329-336, 19081,

e wos e et e e = s

